Estimating concentrations of dissolved organic carbon (DOC) for Arctic coastal waters from space - Tracing modifications in the organic carbon budget -

Atsushi Matsuoka
Takuvik Joint International Laboratory (CNRS-Ulaval), UMI

Thanks to collaboration with:
M. Babin, D. Doxaran, S. B. Hooker,
B. G. Mitchell, S. Bélanger, and A. Bricaud
CONTENTS

1. Introduction
2. Datasets
 2.1. *In situ* data
 2.2. Satellite data
3. Methods
4. Results and discussion
 4.1. DOC estimation for southern Beaufort Sea
 4.2. DOC estimation for various coastal waters
5. Conclusions
INTRODUCTION

Why DOC for Arctic coastal waters?

Volume: 1 % of the global ocean
Freshwater: 10 % of the global ocean

- Thawing of the permafrost containing huge DOC
- Increase in river discharge

Such a quantitative algorithm is currently not available for estimating DOC concentrations temporally and geographically for Arctic waters

Objective: Develop a robust algorithm for estimating DOC concentrations in Arctic coastal waters from space
Datasets

INTRODUCTION

DATA SETS

METHODS

RESULTS & DISCUSSION

CONCLUSIONS

[Map showing data points in the Arctic region with labels for SBI_spr, SBI_sum, MR Aut, and MALINA.]
Beaufort Sea

Sampling (CTD/Niskin + Barge)

Terra/MODIS
21 August, 2009
Absorption coefficients

- Total particles (>0.7 μm), $a_p(\lambda)$
 - Methanol
 - [Kishino et al., 1985]
- Non-algal particles (NAP), $a_{NAP}(\lambda)$
- Phytoplankton, $a_\phi(\lambda)$
- CDOM (<0.2 μm), $a_{CDOM}(\lambda)$
- CDM (= CDOM + NAP), $a_{CDM}(\lambda)$

Chl a concentration

Fluorometric method
[Holm-Hansen et al., 1965; Suzuki and Ishimaru, 1990]

HPLC method [Ras et al., 2008]
In situ $R_{rs}(\lambda)$

In-water spectro-radiometer, C-Ops

$L_u(\lambda)$ and $E_d(\lambda)$ measured at 19 wavelengths (320, 340, 380, 395, 412, 443, 465, 490, 510, 532, 555, 560, 625, 665, 670, 683, 710, 780 nm, and PAR)

$$R_{rs}(\lambda) = \frac{L_w(\lambda)}{E_d(0^+, \lambda)} = \frac{0.54L_u(0^+, \lambda)}{E_d(0^+, \lambda)}$$

[Miller and Austin, 1995; Hooker et al., 2013]

Satellite $R_{rs}(\lambda)$

MODIS $R_{rs}(\lambda)$ at 412, 443, 488, 531, 555, and 670 nm

<table>
<thead>
<tr>
<th>Period</th>
<th>Temporal resolution</th>
<th>Data level</th>
<th>Area</th>
<th>Spatial resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>August, 2009</td>
<td>Daily</td>
<td>L1A</td>
<td>Southern Beaufort Sea</td>
<td>1 km</td>
</tr>
<tr>
<td>2002-2012</td>
<td>Monthly</td>
<td>L3</td>
<td>Pan-Arctic</td>
<td>4 km</td>
</tr>
</tbody>
</table>
Satellite $R_{rs}(\lambda)$ ($\lambda=412$, 443, 488, 531, 555, 667 nm)

$MSD = \frac{1}{N - 1} \sum_{i=1}^{N_{\lambda}} [R_{rs}(\lambda_i) - \hat{R}_{rs}(\lambda_i)]^2$

$a_{\phi}^*(\lambda)$ for Arctic waters
[Matsuoka et al., 2011, JGR]

$S_{CDM} = f(R_{rs}(\lambda))$ or const.
$\eta = f(R_{rs}(\lambda))$ or const.
[Lee et al., 2009]

$\lambda_0 = 443$ nm

$NAP(\lambda_0) = f(b_{bp}(555))$
[Matsuoka et al., 2007, CJRS]

$DOC = f(a_{CDOM}(443))$
[Matsuoka et al., 2013, BG]
DOC estimation for Southern Beaufort Sea waters

-A case study for the Southern Beaufort Sea-
Evaluation of estimated \(a_{\text{CDOM}}(443) \) vs. in situ \(a_{\text{CDOM}}(443) \)

Oceanic waters

- \(S_{\text{CDM}} = 0.0185 \)
- \(\eta = 1.0 \)
- \(r^2 = 0.98 \)
- RMSE = 0.06
- Slope = 0.88

- \(S_{\text{CDM}} = 0.0185 \)
- \(\eta = f(R_{rs}(\lambda)) \)
- \(r^2 = 0.87 \)
- RMSE = 0.09
- Slope = 0.62
Evaluation of estimated $a_{\text{CDOM}(443)}$ vs. in situ $a_{\text{CDOM}(443)}$

Coastal waters

$S_{\text{CDM}}=0.0185$
$\eta=1.0$

- $r^2 = 0.65$
- RMSE = 0.18
- Slope = 1.51

Coastal waters

$S_{\text{CDM}}=0.0185$
$\eta=f(R_{rS}(\lambda))$

- $r^2 = 0.84$
- RMSE = 0.15
- Slope = 0.93
Summary of sensitivity analysis

<table>
<thead>
<tr>
<th>Sample Parameter</th>
<th>Oceanic waters</th>
<th>Coastal waters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r²</td>
<td>Int.</td>
</tr>
<tr>
<td>1-1</td>
<td>0.98</td>
<td>0.003</td>
</tr>
<tr>
<td>1-2</td>
<td>0.81</td>
<td>0.022</td>
</tr>
<tr>
<td>2-1</td>
<td>0.87</td>
<td>0.017</td>
</tr>
<tr>
<td>2-2</td>
<td>0.73</td>
<td>0.025</td>
</tr>
</tbody>
</table>

1-1: \(\eta = 1.0 \) and \(S_{CDM} = 0.0185 \)
1-2: \(\eta = 1.0 \) and \(S_{CDM} = f(R_{rs}(\lambda)) \)
2-1: \(\eta = f(R_{rs}(\lambda)) \) and \(S_{CDM} = 0.0185 \)
2-2: \(\eta = f(R_{rs}(\lambda)) \) and \(S_{CDM} = f(R_{rs}(\lambda)) \)
RESULTS & DISCUSSION

DOC for Southern Beaufort Sea

CONCLUSIONS

CDOM estimation using ocean color data in August, 2009

<table>
<thead>
<tr>
<th>$a_{CDOM}(443)$ (m$^{-1}$)</th>
<th>G. Mean</th>
<th>G. SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satellite</td>
<td>0.034</td>
<td>2.776</td>
</tr>
<tr>
<td>In situ</td>
<td>0.055</td>
<td>2.265</td>
</tr>
</tbody>
</table>

[Matsuoka et al., 2013, BG]
An empirical relationship between DOC concentrations and $a_{\text{CDOM}}(443)$ for southern Beaufort Sea waters.

DOC^{obs} (μM) vs $a_{\text{CDOM}}^{\text{obs}}(443)$ (m$^{-1}$)

$r^2 = 0.97$

[Matsuoka et al., 2012, BG]
DOC estimation using ocean color data in August, 2009

RESULTS & DISCUSSION - DOC for Southern Beaufort Sea - (6/6)

DOC (μM) outside of the regression

<table>
<thead>
<tr>
<th>DOC (μM)</th>
<th>G. Mean</th>
<th>G. SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satellite</td>
<td>79</td>
<td>1.4</td>
</tr>
<tr>
<td>In situ</td>
<td>75</td>
<td>1.4</td>
</tr>
</tbody>
</table>

[Source: Matsuoka et al., 2013, BG]
DOC estimation for various coastal waters

-Pan-Arctic scale-
Importance of $a_\phi^*(\lambda)$ parameterization

Satellite $R_{rs}(\lambda)$ ($\lambda=412, 443, 488, 531, 555, 667$ nm)

$a_\phi^*(\lambda)$ for Arctic waters
[Matsuoka et al., 2011, JGR]

$S_{CDM} = f(R_{rs}(\lambda))$ or const.
$\eta = f(R_{rs}(\lambda))$ or const.
[Lee et al., 2009]

$\lambda_0 = 443$ nm

$\alpha_{NAP}(\lambda_0) = f(b_{bp}(555))$
[Matsuoka et al., 2007, CJRS]

$\alpha_{CDOM}(\lambda_0)$

$\alpha_{NAP}(\lambda_0)$

$\alpha_{CDOM}(\lambda_0)$

$DOC = f(\alpha_{CDOM}(443))$
[Matsuoka et al., 2012, BG]

[After Matsuoka et al., 2013, BG]
Indirect evaluation of our CDOM absorption algorithm for eastern (Russian side) Arctic waters
Climatology of $a_{CDOM}(443)$ from June to September during the periods 2002-2012
Histograms of $a_{\text{sat}}^{\text{CDOM}}(443)$ in August for major river mouths

Results & Discussion

- **DOC for various coastal waters**

Conclusions

Southern Beaufort Sea (SB)

<table>
<thead>
<tr>
<th>$a_{\text{CDOM}}(443)$ (m$^{-1}$)</th>
<th>G. Mean</th>
<th>G. SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satellite</td>
<td>0.059</td>
<td>2.363</td>
</tr>
<tr>
<td>In situ (Matsuoka et al., 2012)</td>
<td>0.055</td>
<td>2.265</td>
</tr>
</tbody>
</table>

Laptev Sea (LP)

<table>
<thead>
<tr>
<th>$a_{\text{CDOM}}(443)$ (m$^{-1}$)</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satellite</td>
<td>< 3.3</td>
</tr>
<tr>
<td>In situ (Stedmon et al., 2011; Heim et al., 2013)</td>
<td>< 3.5</td>
</tr>
</tbody>
</table>

Kara Sea (KR)

<table>
<thead>
<tr>
<th>$a_{\text{CDOM}}(443)$ (m$^{-1}$)</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satellite</td>
<td>< 4.4</td>
</tr>
<tr>
<td>In situ (Stedmon et al., 2011)</td>
<td>< 4.5</td>
</tr>
</tbody>
</table>

![Map showing distribution of $a_{\text{CDOM}}(443)$ in August for various coastal waters]
DOC versus $a_{\text{CDOM}}(443)$ relationship for Eastern and Western Arctic Ocean

RESULTS & DISCUSSION - DOC for various coastal waters – (5/7)
Climatology of DOC concentrations for coastal waters from June to September during the periods 2002-2012
RESULTS & DISCUSSION

DOC for various coastal waters – (7/7)

CONCLUSIONS

<table>
<thead>
<tr>
<th>DOC (µM)</th>
<th>G. Mean</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satellite</td>
<td>82</td>
<td>< 808</td>
</tr>
<tr>
<td>In situ</td>
<td>79</td>
<td>< 577</td>
</tr>
</tbody>
</table>

Histograms of DOCsat in August for major river mouths

- **Southern Beaufort Sea**
 - DOC (µM)
 - **Satellite**: 82
 - **In situ (Matsuoka et al., 2012)**: 79

- **Laptev Sea**
 - DOC (µM)
 - **Satellite**: < 808
 - **In situ (Le Fouest et al., 2013)**: < 577

- **Kara Sea**
 - DOC (µM)
 - **Satellite**: < 992
 - **In situ (Le Fouest et al., 2013)**: < 465-857
CONCLUSIONS

1. Our inversion algorithm for deriving $a_{\text{CDOM}}(443)$ performs accurately within 35% and 50% errors for oceanic and turbid waters, respectively. Results showed that $a_{\text{CDOM}}(443)$ retrievals for Arctic waters using ocean color data were reasonable compared to *in situ* measurements based on statistics.

2. DOC estimates from space were also reasonable compared to *in situ* measurements.

3. Further evaluation will be made to further confirm the reliability of the $a_{\text{CDOM}}(443)$ and DOC algorithms.
ACKNOWLEDGEMENTS

- This research is funded by CNES (Centre Nationale d’Étude Scientifique), ESA (European Space Agency), CNRS (Centre Nationale Recherche Scientifique)/ Université Piérré et Marie Curie (UPMC), ANR (Agence Nationale de la Recherche), EC (European Commission), NSERC (Natural Sciences and Engineering Research Council of Canada), NSF (National Science Foundation), and NASA (National Aeronautics of Space Agency). My postdoctoral stay is funded by the CNES for MALINA and ICESCAPE cruises.
Matchup of DOC estimates against in situ measurements during CFL cruise in 2008

[In situ DOC data were provided by M. Gosselin]